Ficha de Unidade Curricular (FUC)

- 1. Caracterização da Unidade Curricular.
- 1.1. Designação da unidade curricular

Circuitos Eletrónicos Embebidos

1.2. Sigla da área científica em que se insere

ΕE

1.3. Duração

Semestral

1.4. Horas de trabalho

162

1.5. Horas de contacto

T - 22.5; TP - 22.5; P- 22.5

1.6. ECTS

6

1.7. Observações

Campo alfanumérico (1.000 carateres).

2. Docente responsável e respetiva carga letiva na unidade curricular

Maria da Graça Vieira de Brito Almeida	4,5h

3. Outros docentes e respetivas cargas letivas na unidade curricular

Luís Manuel dos Santos Redondo	1,5h
l	i e

4. Objetivos da aprendizagem (conhecimentos, aptidões e competências a desenvolver pelos estudantes)

Esta unidade curricular tem por objetivo analisar e sintetizar sistemas baseados em microcontroladores, analisar como funcionam e como comunicam com os periféricos, bem como executar programas aplicativos em linguagem específica de programação destes sistemas, acionando e experimentando os seus circuitos e componentes. Deste modo, proporciona-se a introdução aos circuitos eletrónicos analógicos e digitais onde estes se inserem, ministrando aos alunos um conhecimento mais abrangente dos circuitos de comando e controlo baseados em microcontroladores.

5. Conteúdos programáticos

- Unidades de memória e arquitectura elementar de Microprocessador 8085;
- Microcontroladores, PIC16F628A, PIC16F877, PIC18F4431 e PIC18F4520;
- Programação em Assembly e linguagem de alto nível;
- Sistemas de desenvolvimento com exploração dos módulos PWM, conversor A/D e comunicação série.

6. Demonstração da coerência dos conteúdos programáticos com os objetivos da unidade curricular

Considerando que a competência principal adquirida nesta unidade curricular é a capacidade de projetar sistemas de comando e controlo baseados em Microprocessadores e/ou Microcontroladores, é necessário estudar as arquiteturas e características dos mesmos, bem como dos seus componentes principais. A realização de programas de aplicação em assembly é fundamental para o dimensionamento em condições reais.

7. Metodologias de ensino (avaliação incluída)

As aulas teóricas são complementadas com exercícios desenvolvidos nas aulas teóricopráticas e nas aulas práticas os alunos podem simular e experimentar nos diversos dispositivos à disposição (P1) e na realização de um projeto (P2).

A classificação final (F) é dada por: F= P1*0,2 + P2*0,3 + Exame*0,5

Onde: P1 - Trabalhos práticos parciais; P2 - Projeto Final e respetiva discussão individual; Exame - exame sobre toda a matéria.

O aluno para ter aprovação nesta unidade curricular tem de ter uma nota final (F) igual ou superior a 10 valores(numa escala de 0 a 20) assim como em todas as componentes dessa avaliação, uma vez que as mesmas são consideradas pedagogicamente fundamentais.

8. Demonstração da coerência das metodologias de ensino com os objetivos de aprendizagem da unidade curricular

A competência principal adquirida nesta unidade curricular é a capacidade de projetar sistemas de comando e controlo baseados em Microcontroladores, sendo necessário apresentar os conceitos teóricos, realizar exercícios de aplicação, promover a realização de trabalhos de laboratório e projeto.

Nas aulas teóricas são apresentadas as arquiteturas e características dos sistemas embebidos, bem como dos seus componentes principais, e programas de aplicação em assembly. Nas aulas teórico-práticas são propostos aos alunos exercícios de aplicação em assembly. O projeto implementado pelos alunos nas aulas praticas será avaliado por um relatório e respetiva discussão.

9. Bibliografia principal

- Folhas de Apoio à Unidade curricular, Luis Redondo, Graça Almeida, 2017
- Microprocessors and Interfacing Programming and Hardware, Douglas V. Hall, Mc Graw Hill
- Desbravando o PIC, David José de Souza, Editora Érica, 2003
- Embedded Design with the PIC18F452Microcontroller, John B. Peatman, Prentice Hall,
 2003
- Advanced PIC Microcontroller projects in C", Dogan Ibrahim, Elsevier, 2008
- Sistemas Baseados em Microcontroladores PIC, Victor Gonçalves, Publindústria, 2008