



# Ficha de Unidade Curricular (FUC)

| Curso              | MESTRADO EM ENGENHARIA MECÂNICA |               |             |  |
|--------------------|---------------------------------|---------------|-------------|--|
| Unidade Curricular | Máguinas Hidráulias             | Obrigatória   |             |  |
|                    | Máquinas Hidráulicas            | Opcional      | $\boxtimes$ |  |
| Área Científica    | Termofluidos e Energia          | Classificação | В           |  |

Classificação da unidade curricular: B - Ciências de base de engenharia; C - Ciências de engenharia; E - Ciências de Especialidade; P - Ciências complementares.

| Ano: 1º           | Semestre: 2º |         | ECTS: 5,0 |    | Total de horas: 3,0 |
|-------------------|--------------|---------|-----------|----|---------------------|
| Horas de Contacto | T:           | TP: 5,0 | PL:       | S: | OT:                 |

T - Teórica; TP - Teórico-prática; PL - Prática Laboratorial; S - Seminário; OT - Orientação Tutorial.

| Docente Responsável    | Grau/Título | Categoria             |  |
|------------------------|-------------|-----------------------|--|
| Jorge Mendonça e Costa | Doutor      | Professor Coordenador |  |

# Objectivos de aprendizagem (conhecimentos, aptidões e competências a desenvolver pelos estudantes)

(máx. 1000 caracteres)

Abordagem da teoria das máquinas hidráulicas e análise dos aspectos subjacentes ao projecto, instalação e operação de máquinas hidráulicas, fornecendo um conhecimento aprofundado deste tipo de equipamentos. Introdução às técnicas de análise dimensional para a elaboração de parâmetros adimensionais, aplicáveis na construção de modelos físicos.

## Conteúdos programáticos

(máx. 1000 caracteres)

## ANÁLISE DIMENSIONAL E TEORIA DE MODELOS

Grandezas físicas e dimensões, Homogeneidade dimensional, Teorema de Buckingham.

Semelhança geométrica, cinemática e dinâmica. Exemplos.

## TEORIA DAS MÁQUINAS HIDRÁULICAS

Equações de transporte. Equação de energia. Equação de Euler das Turbomáquinas.

TURBINAS HIDRÁULICAS





Turbinas de impulso (Pelton) e de reacção (Francis e Kaplan): Componentes, Triângulos de velocidade, Rendimentos, Curvas características. Adimensionalização, Velocidade específica, Cavitação. Centrais de marés. Turbina de bolbo, turbina / bomba reversível, mini turbinas.

#### **BOMBAS HIDRÁULICAS**

Bombas de deslocamento positivo e rotodinâmicas. Bombas centrífugas. Volutas e difusores. Estações elevatórias.

Triângulos de velocidade, Rendimentos, Curvas Características, Ponto de funcionamento. Adimensionalização. Velocidade específica. Cavitação em bombas. Bombas em série e paralelo, dimensionamento e instalação.

Mecânica de fluidos computacional aplicada ao estudo de máquinas hidráulicas.

# Demonstração da coerência dos conteúdos programáticos com os objectivos da unidade curricular

(máx. 1000 caracteres)

A abrangência dos conteúdos programáticos encontra-se em linha com os objectivos da unidade curricular. Garante-se um bom equilíbrio entre a profundidade com que os temas são abordados e as horas de contacto com os discentes.

## Metodologia de ensino (avaliação incluída)

(máx. 1000 caracteres)

A metodologia de ensino prevê formação em sala na sua componente teórica e prática recorrendo a bibliografia de apoio da unidade curricular (UC), apresentações em powerpoint, disponibilização de material complementar de apoio à unidade curricular na plataforma Moodle (resolução de exemplos concretos, etc.).

Existe prática laboratorial em que está previsto o ensaio de dois tipos de turbinas hidráulicas (e.g. turbinas Pelton e Francis).

A avaliação compreende:

- 1 Exame;
- 1 Projecto com discussão final.

A classificação final será obtida com base na seguinte ponderação, a aplicar às classificações parcelares:

1/2 – Exame

1/2 - Projecto





# Demonstração da coerência das metodologias de ensino com os objectivos de aprendizagem da unidade curricular

(máx. 3000 caracteres)

O objectivo que visa capacitar os alunos com uma sólida formação a nível teórico e prático sobre máquinas hidráulicas passa por uma abordagem dual com uma componente teórico-prática em sala e outra do tipo "hands-on approach". Esta última, a desenvolver pelos alunos, tem por base a realização de um projecto de equipamento (bomba radial, turbina, etc.) com recurso a software comercial, o que permite uma melhor integração dos conhecimentos adquiridos.

### Bibliografia principal

(máx. 1000 caracteres)

White, Frank M. FLUID MECHANICS - McGraw-Hill;

Wright, Terry FLUID MACHINERY – Performance, analysis and design - CRC Press

Mohinder Nayyar PIPING HANDBOOK - McGraw-Hill.

Dixon, S.L. FLUID MECHANICS AND THERMODYNAMICS OF TURBOMACHINERY - BH

Denton, John (ed.) DEVELOPMENTS IN TURBOMACHINERY DESIGN – PE Publishing